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Computer simulations of the structure of colloidal ferrofluids
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The structure of a ferrofluid under the influence of an external magnetic field is expected to become
anisotropic due to the alignment of the dipoles into the direction of the external field, and subsequently to the
formation of particle chains due to the attractive head to tail orientations of the
fluid particles. Knowledge about the structure of a colloidal ferrofluid can be inferred from scattering data via
the measurement of structure factors. We have used molecular-dynamics simulations to investigate the struc-
ture of both monodispersed and polydispersed ferrofluids. The results for the isotropic structure factor for
monodispersed samples are similar to previous data by Camp and Patey that were obtained using an alternative
Monte Carlo simulation technique, but in a different parameter region. Here we look in addition at bidispersed
samples and compute the anisotropic structure factor by projecting the g vector onto the XY and XZ planes
separately, when the magnetic field was applied along the z axis. We observe that the XY-plane structure factor
as well as the pair distribution functions are quite different from those obtained for the XZ plane. Further, the
two-dimensional structure factor patterns are investigated for both monodispersed and bidispersed samples
under different conditions. In addition, we look at the scaling exponents of structure factors. Our results should

ferro-

be of value to interpret scattering data on ferrofluids obtained under the influence of an external field.

DOLI: 10.1103/PhysRevE.71.061203

I. INTRODUCTION

Colloidal ferrofluids have received much attention over
the past four decades due to their possible applications in
various fields ranging from mechanical engineering [1] to
biomedical employment (say, [2]). In fact, ferrofluids are col-
loidal suspensions containing single domain ferromagnetic
particles distributed in a carrier liquid [3]. The structure of
ferrofluids can be strongly influenced by external magnetic
fields. The reason is that the single domain magnetic par-
ticles inside the ferrofluid can interact easily with the mag-
netic field, that in turn can affect the structural properties
tremendously. Here, the particles interact with each other by
the long-range anisotropic dipole-dipole potential as well as
the short-range symmetric potentials, such as the steric re-
pulsion, the electrostatic repulsion, and the Van der Waals
attraction. Owing to these interactions, various microstruc-
tures have been experimentally found in ferrofluids [4-10].
In this connection, many theoretical and simulational works
have focused on the understanding of the structural proper-
ties of ferrofluids. Interesting topics include the occurrence
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of the ferroelectric phase or spontaneous magnetization
[11-18], the chain formation [15,19-36], and the gas-liquid
phase transition behavior [23,37-44], etc. In particular, by
using Monte Carlo techniques one [29] studied the formation
of agglomerates in ferrofluids by taking into account the de-
pendence on particle sizes, and found that the smallest par-
ticle size showed little evidence of ordering since thermal
disordering dominates the situation. Also, a defect-induced
two-phase coexistence was predicted [30] in dipolar fluids,
namely, a dilute gas of chain ends coexisting with a high-
density liquid of chain branching points. In addition, by us-
ing a Brownian dynamics calculation method [31], cluster
structures and cluster aggregations were numerically investi-
gated in a two-dimensional ferrofluid, too.

In practice, the structure of ferrofluids can be character-
ized by a pair distribution function [45]

g<r>=§<22 5(r—r,~,->>, (1)
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which is a function of the particle positions r. Here V de-
notes the volume of the sample, N is the number of particles,
and r;;=r;—r; denotes the difference of the position vectors
r; and r;. The pair distribution function gives the probability
of finding a pair of particles at a given distance r=|r| apart.
Structure factors can be obtained from scattering experi-

ments, which, however, are just related to the pair distribu-
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where no external field is applied (say, [22]). In the case of
an applied external field exerted on the system, anisotropy is
expected to appear inside this system due to the formation of
particle chains which get aligned in the direction of the ex-
ternal applied magnetic field [15,19-31]. In this case, the
study of the anisotropic structure factor seems to be more
appropriate, where the structure factor is projected onto a
certain geometric plane [27,28,46—48] in order to get the
information of the anisotropic structural properties of the
model ferrofluid of interest. In other words, basic features of
the anisotropy of the structure of the ferro-
fluids can be inferred by investigating the anisotropic struc-
ture factor (or pair distribution function), which can also be
accessed experimentally [27,49].

Since all commercially available ferrofluids are polydis-
persed, we also discuss the structural property of a polydis-
persed system, which is different from that of a monodis-
persed system [10,26,50-53]. Bidispersed ferrofluids
containing either dipolar particles with equal diameters and
different dipole moments [54] or particles with different di-
ameters and equal dipole moments have also been recently
studied by means of density-functional theory. As a starting
point, we therefore also investigate the physical properties of
a bidispersed ferrofluid.

In the present paper, we analyze data obtained by a
Langevin dynamics simulation method. These data have
been obtained in earlier simulation of the equilibrium prop-
erties of monodispersed and bidispersed ferrofluids
[25,26,55]. The long-range dipolar interactions are computed
using the Ewald summation with the metallic boundary con-
dition. In addition, we have also performed a check with a
model monodispersed ferrofluid of N=250 and 2000 par-
ticles at the same density and a model bidispersed ferrofluid
of N=3029 at the corresponding density, which all showed
identical results to the corresponding 1000-particle system.
Thus, without loss of generality, we shall investigate 1000
particles for the following simulations.

The paper is organized as follows. In Sec. II, we describe
the molecular-dynamics simulations in use. In Sec. III, the
simulation results are presented for the monodispersed and
bidispersed cases, respectively. This is followed by a discus-
sion and conclusions in Sec. I'V.

II. MOLECULAR DYNAMICS SIMULATIONS
A. Langevin initial susceptibility

Let us start with a dilute monodispersed ferrofluid. In fact,
the dilute ferrofluid can be considered as a gas consisting of
noninteracting particles [56]. In this case, it is possible to
write the equilibrium magnetization M; with the aid of the
Langevin function L(a)=coth(a)—1/a, and one obtains

M;=——L(a), (2)
M

where m stands for the magnetic moment of a particle and
o=4mx 10" H/m. Here a=mH/kT represents the Lange-
vin parameter, where H denotes the strength of the magnetic
field, k is the Boltzmann constant, and 7 is the temperature.
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For this model, one can obtain the Langevin susceptibility,
which has been demonstrated in Ref. [25],

4
XL= §7TP>\03’ 3)

where N=m?/4mwuokTo> represents the dipolar coupling con-
stant, p=N/V is the number density of the particles, and o is
the diameter of the particle. However, in concentrated ferro-
fluids, the interparticle interaction is expected to play an im-
portant role, thus leading to a significant increase of the
Langevin initial susceptibility x;.

B. Simulation method

The model system we study consists of a system com-
posed of N spherical particles of diameter ¢ distributed in a
cubic simulation box of side length L. Each particle has a
permanent point dipole moment m; which is located at its
center. Then, the dipole-dipole interaction potential between
particle i and j and all the images of j is given by

PD:;
Y Aapy
XE( m;-m; 3[m;-(r;+nl)][m,- (ri,-+nL)])
w \|r;+nLp Ir;+nL|’ ’

(4)

under the periodic boundary condition along all spatial direc-
tions. Here r;;=r;—r; denotes the displacement vector of the
two particles, and the sum extends over all simple cubic
lattice points, n=(n,,n,,n.) in a spherical summation order,
where n,,n,,n, are integers. Our molecular-dynamics simu-
lation method is the same as the one implemented in a pre-
vious paper [25].

We use the Ewald summation for dipolar systems to
evaluate Eq. (4) effectively, which gives [45,57,58]

vP=UP+ U+ U+ UD, (5)

where the real-space U the reciprocal-space U the self
U(S, and the surface U )" contributions are, respectlvely,

glven by
U = > {(m;- m))R,(|r;+nL|) —[m;- (r;+nL)]
! 4'77':’-14011 7
X [m; - (r;;+nL)]Ry(|r;; +nL|)}, (6)
1 4
U = PO
’ 477'”“01‘31(523,1;#0 K
Xexp[— (mk/xL)*](m; - k)(m; - k)exp(2 ik - r;;/L),
(7)
1 24
l(f)=_477M 3K~(m +m), (8)
o3V
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1 4
m -m,,
dapg Qupc+ DL

with Ry (x)=[erfc(rx)+(2xx/ Va)exp(-=x*x?)]/x* and R,(x)
=[3 erfc(kx) + (2kx/\m)(3+2K2x>)exp(-x>x?)]/x°,  where
erfc(x)=2m"2["exp(-1?)dt stands for the complementary
error function, and the inverse length « denotes the splitting
parameter of the Ewald summation. We take ug-=% (metal-
lic boundary condition), which results in a vanishing surface
term as well as a vanishing demagnetization field.

The steric interaction between two ferrofluid particles is
modeled with a purely repulsive Lennard-Jones (LJ) poten-
tial of the form

12 6
U}jl=4€[<§) _(rz) —O(RC)}, (10)
ij ij

where O(R.)=(o/R.)'">—(c/R,)® with a cutoff radius R.
=260, meaning that U;7=0 for r;;=R,. The exact form of
the soft sphere potential is irrelevant, and a simple r~'? po-
tential would have given similar results, representing the
properties of a hard-sphere dipolar fluid that is often consid-
ered in analytical theories. However, we expect that using a
full LJ potential, i.e., with a short-range attraction, will give
slightly different results, since also the phase behavior is
known to differ [39,42].

Similar to Ref. [25], a Langevin dynamics implementa-
tion is used to thermostat the system. The translational and
rotational Langevin equations of motion of particle i are
given by

F)
)

)

MlVl=F,—FTVl+ §lT, (11)

Ii'a‘,i:Ti_FRQi-'- gf, (12)

where M, and I, denotes the mass and inertial tensor of the
particle, and I'; and 'y are the translational and rotational
friction constants, respectively. Here the first moments of the
Gaussian random force and torque should vanish, namely
(€L (1))=0 and (& (1))=0, whereas their second moments
satisfy (&],(1)&,(1")=6KTT'18,8,p0(11") and (&5,(1)&5(1"))
=6kTI 6,j6,50(t—1"), where a and B represent the x,y,z
components in the Cartesian coordinates, respectively.

In all simulations, we fixed the root mean square (rms)
absolute errors in the dipolar forces to AFP
<10™*m?/4muyo*, which corresponds to 1074/6 of the at-
tractive force between two contacting particles with dipole
moments in parallel alignment. The optimal values of the
Ewald parameters for this choice had been determined sepa-
rately for each system using theoretical estimates [58]. This
enabled us to minimize the overall computational time for a
predefined accuracy. For the present simulations, the vari-
ables are given in dimensionless reduced form by the follow-
ing units: length r'=r/0o, dipole moment m"?
=m?/4muyeo’, moment of inertia I =1/Mao”> (M: mass of a
particle), time f'=t(e/Md?)"?, friction constants I,
=I'(0?/Me&)"”? and T,=Tx/(Md?€)"?, and magnetic field
H'=H(4muyo’/ €)', as well as temperature T"=kT/e. The
values of the dimensionless friction constants are used as
I';=10.0 and I'=3.0, respectively. The orientational coordi-
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nates of the particles were expressed in terms of quaternion
parameters, and the equations of motion were integrated via
a leap-frog algorithm [45]. We set I"=0.4 for the dimension-
less moment of inertia, and performed the simulations at the
constant temperature 7" =1 and the reduced time step Af"
=0.002. By taking into account a monodispersed ferrofluid
having magnetite particles with diameter =10 nm, we ob-
tain the dipolar coupling constant A=1.3 at room temperature
T=300 K. In the case of larger particles with =13 nm (or
16 nm), we obtain A\=2.9 (or 5.32) under the same condi-
tions. It is worth remarking that A may be further enlarged by
decreasing the temperature or using cobalt as a working ma-
terial. In the simulations, the runs were started from initial
configurations with random particle positions and dipole mo-
ment orientations. For each case, the system was at first
simulated for a period of at least 50 000 time steps, ensuring
the equilibration of the magnetization. The structural proper-
ties were then calculated from the data for another period of
at least 200 000 time steps. Next, the structural properties,
i.e., structure factors and pair distribution functions, were
calculated by sampling the system every 1000 time steps in
the equilibrium state.

For the bidispersed system [26], the large magnetite par-
ticles had a diameter o; =16 nm and a dipolar coupling con-
stant \;=5.32 (at T=300 K) and the small particles had oy
=10 nm and Ag=1.3 (at T=300 k), respectively. In view of
the different sizes of the particles, the corresponding purely
repulsive L] potential representing the short-range interac-
tions between the particles is given by

12 6

o+ 0 o+ 0

l){fjj——4e{<—ll ) —(—ll ) :|+€, (13)
2rij 2rij

with a cutoff radius R.=2"9(c;+07). The other simulation
parameters for the model bidispersed ferrofluid are the same
as those for the above-mentioned monodispersed system, by
replacing the physical parameters of a reference particle with
those of a small particle, e.g., 0— oy and M — m,. Here m,
denotes the mass of a small particle. In particular, for the
large particles in the bidispersed system, the corresponding
reduced variables in dimensionless form are as follows: di-
pole moment m*?=m?/(4muyeay), mass for the large par-
ticles myy=myo/myo=(0,/0g)’, and moment of inertia I"
=1/ (maoaé). For more details of the simulation, please refer
to Ref. [26]. The dipole moment of a large magnetite particle
is given by m=8.2X 107! A m? according to the dipole mo-
ment of a 10 nm particle 2 X 107" A m? [10], the mass of
the large particle is m,,=1.07 X 1072° Kg according to the
bulk density of magnetite 5X 10* Kg/m?, and thus its mo-
ment of inertia is /=2.74 X 10737 Kg m?.

C. Structure factor
Based on the simulation data, it is straightforward to cal-

culate the structure factor [59], which is actually a Fourier
transformation of the pair distribution function [Eq. (1)],

061203-3



HUANG, WANG, AND HOLM

. N 2 /N 2
S(q)=— (E cosq-r,-) +(E sinq-rj) . (14)
N\ N\ J=1

The wave vectors q have to be commensurate with the peri-
odic boundary conditions, i.e., q=(27/L)(l,m,n)# (0,0,0),
where [, m, and n are integers. The precision of the structure
factors is usually limited for small g; in this work, we take
27/L<|q|<9, where 27/L is the smallest available value
of |q| because of the size of the simulation box. This covers
the g region of interest, and a similar range was also studied
in Ref. [28]. Since for the isotropic fluid the structure is
rotationally invariant, S(q) is obtained by averaging the con-
tributions from all the wave vectors of magnitude |q|. The
anisotropic structure factor S(g,,) [or S(¢,,)] was obtained by
omitting the z (or y) component of q and r in Eq. (14)
[46-48]. According to the general relation between S(q) and

g(r) [59],

S@) =1 +pf [g(r) — 1]e~"dr, (15)

there is a relation between S(q,,) and the anisotropic pair
distribution function g(r,),

S(g,) =1+ pf drxf dryJ dr [g(r,) - 1]e~@xrctayn)
(16)

Accordingly, S(g,.) possesses a similar expression. However,
we computed our S(g,,) and S(g,.) by using Eq. (14), and not
via the definition of the Fourier transform of the pair distri-
bution function.

Anisotropic structure factors of ferrofluids were investi-
gated, respectively, in experiments [27] and computer simu-
lations [28]. To compare with the experimental results [27],
an anisotropic structure factor was defined in the (¢, 6" ,q))
cylindrical coordinates due to the cylindrical symmetry
around the axis of an external applied magnetic field [28], in
contrast to ours defined in the (q,,q,.q,) Cartesian coordi-
nates. The relations are ¢ | = \q§+q§ and ¢,=q,, which were
both used in Eq. (14) to compute the 2D structure factor
S(g . ,q;) shown in Figs. 6 and 10 (where the structure factor
is projected onto the ¢, and ¢, plane). This avoids using
some smoothing functions, as has been done in Ref. [28],
where according to Eq. (15), S(¢,,q,) was computed from
the pair distribution function g(r, ,r)),

o % 2
S(QLJI|)=1+PI d’”f drif rodélg(r ,n)—1]
- 0 0
Xe—i(quL cos 0+q”rH)’ (17)

with r; = \/ri+r§ and ry=r,. Owing to the different represen-
tation in use, our S(q,,) is equivalent to the structure factor
S(6) at 6=90° or 270° [S(6) denotes the structure factor S(g)
. _[2, 2 .
with g=Vgq7 +¢j as a function of the angle 6 between the
wave vector ¢ and the direction of field H], as used in Figs.
5-8 in Ref. [28] or Figs. 3(a) and 8 in Ref. [27]. In this work,
because of the isotropic behavior along the x and y axes,
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FIG. 1. (Color online) Monodispersed case: Structure factor
5(qyy.) for (a) x,=0.47 and (b) x,=1.67 as a function of \ at zero
field (@=0). It is worth noting that all the quantities plotted in Figs.
1-10 are dimensionless naturally [e.g., S(g) and g(r)], or that they
were already normalized to be dimensionless (e.g., r, ¢, x, and y) in
the text.

there should be S(g,.)=S(g,,)=S(q, .), where S(g, .) denotes
the structure factor obtained from S(g,,) [or S(g,.)] by re-
placing g, (or g,) with g, . In this regard, our S(g,,) can be

seen to be equivalent to the averaged structure factor S(6)
=(1/360°) [S(H)d6.

III. SIMULATION RESULTS

The results for the monodispersed ferrofluid are shown in
Figs. 1-6. In Fig. 1, the isotropic structure factor S(q,,,) is
plotted for Langevin initial susceptibility (a) x;,=0.47 and

20 T I T = T I T
| (@) | | (b) |

o A=4, p=0.075 o
+ =8, p=0.0375 7 B

A=4, p=0.3
. A=8,p=0.15
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b
|
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|
|

T I T (c) T I T (d)
I o A=4,p=03
L+ A=8,p=0.15 i

3% a=4,p=0075
L. A=8,p=0.0375

e TN

S@o/S@ )l oo

FIG. 2. (Color online) Monodispersed case: Ratio of the
nonzero-field  structure  factor to the zero-field (a,b)
S(qu)la:9/ S(qu)‘a:() and (C,d) S(qxz)|a=9/ S(qxz) a=0> for (a,c)
x.=0.4m and (b,d) x;=1.67 as a function of \. In (c,d), the solid
(or long-dashed) line is a guide for the eye for A=4 (or A=8).
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FIG. 3. (Color online) Monodispersed case: Pair distribution
function (a,b) g(r,,) and (c,d) g(r,,) for (ac) x;=0.4m and (b,d)
X1.=1.67r as a function of \ at nonzero field (a=9). For clarity, the
interesting parts of the figures are enlarged in the insets,
respectively.

(b) x;.=1.67 as a function of dipolar coupling constant A at
zero field (a=0). It is found that high density can suppress
the structure factor at the region of low ¢ vectors, for the
same N. As a matter of fact, this has also been found by
Camp and Patey when they performed a Monte Carlo simu-
lation of a dipolar system consisting of 256 particles [22] at
N=17.7 at various densities. On the other hand, at given yx;,
high-density p (or low \) can suppress again the structure
factor at the region of low wave vectors. A result of classical
statistical mechanics is that

10— %0&

|

10 3 ° %
i M %Q?OQ@ 00 Ro @
| - ! | .%@Q:
)

-10 ( 10

FIG. 4. Projection of particle locations onto the XY plane, to
account for the depletion observed for A=8 in Fig. 3(a).
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FIG. 5. (Color online) Monodispersed case: Log-log plots of the
structure factors, (a) S(qyy,), (b) S(qy,), and (c) S(g,,), for (a) zero
field («=0) and (b,c) nonzero field («=9) as a function of X and/or
X.- The curves denote the fitting: (a) dotted line for A\=8 and po”
=0.0375 (x;=0.4m); dashed line for A\=8 and po>=0.15 (x;
=1.67); (b) solid line for A=4 and pa>=0.075 (x;=0.47); dotted
line for A\=8 and po>=0.0375 (x,=0.47); dashed line for A=8 and
po>=0.15 (x;=1.6m). The corresponding scaling exponents v are
indicated in the figure.

S(qaye=0) = 7l " (18)
where 7; is the compressibility of the fluid, and 7,
=B/p is the compressibility of the ideal gas [59]. Thus
5(q,y,=0) is a measure for the density fluctuations of the
system. It is clear to see that the high density can reduce the
compressibility of the ferrofluid, and hence in view of Eq.
(18) S(g.,,=0) should be reduced accordingly, which just
explains the present observation that increasing the density
causes the structure factor of the low g vectors S(g,,,~0) to
decrease.

At larger values of g=35, we observe the occurrence of a
peak that gets more pronounced for larger values of A. This
peak is due to short-range positional correlations. At small A,
there are only weak correlations, corresponding to the pres-
ence of small, loosely bound clusters. At higher values of A,
the peaks, and therefore the correlations, get more pro-
nounced, and at A=8 many particles are involved in clusters,
leading to a sharp peak at real space distance o. In addition,
we also studied an intermediate coupling case of A=6. As
expected, the obtained structure factor lies between those for
A=8 and A=4. Thus, for clarity, the result for the middle A is
not shown in the present paper. The isotropic structure factor
shown in Fig. 1 can be compared with the experimental re-
sults [27]. In detail, Fig. 10 in Ref. [27] displays a zero-field
isotropic structure factor for the sample A with volume frac-
tion of particles ¢=0.19, which corresponds to number den-
sity p=0.36 and A=1.75 in our notation. The framework of
the structure factor is similar to that of Fig. 1(a) for \=1 and
p=0.3. That is, the structure factor begins from a value
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FIG. 6. Monodispersed case: 2D structure factor S(q, ,g;) of monodispersed cases, with —7<¢, < and —7<¢g =< 7, with an applied
magnetic field perpendicular to the horizontal axis. From left to right panels: «=0,9. From upper to lower panels: A=4,8 (or p

=0.075,0.0375). Bright (dark) regions indicate high (low) intensities.

smaller than 1 at low g. As ¢ increases, a peak is reached.
Similar behavior can also be found in Fig. 5 in Ref. [27],
where the sample A was investigated experimentally for vari-
ous volume fraction ¢. Since the dipolar coupling constant A
for the sample A was fixed at A=1.75, the frameworks for all
the curves for various ¢ are similar as well. In Fig. 1, be-
cause of the different N in use, the framework can be
changed significantly, especially at low ¢. This further dem-
onstrates that the dipolar coupling constant N plays a crucial
role in the formation of particle chains.

Figure 2 displays the ratio of the nonzero-field structure
factor (at a=9) to the zero-field one as a function of
A, namely (a,b) N (qu)|a=9/S (qu)|a=0 and (C»d)
S(sz)|a:9/S(CIxz)|a:0 for (a,c) XL:0'47T and (b?d) XL= 1.67.
Here the upper panels [namely (a) and (b)] stand for the ratio
within the XY plane, while the lower panels [namely (c) and
(d)] denote the ratio within the XZ plane. For the sake of
clarity, we have omitted the curve for A=1 and p=0.3 (this
curve is similar to that for A=4 or 8). It is worth mentioning
that due to symmetry, the result for the YZ plane should be
the same as that for the XZ plane, as the external field is
along the z axis. From Fig. 2, it is found that all the structure

factor ratio tends to be unit as the wave vector (g, or g,,) is
large enough. In detail, for the XY plane, high p (or low \)
suppresses again the structure factor ratio at the region of
low wave vectors ¢,,. In contrast, as far as the XZ plane is
concerned, low p (or high \) suppresses the ratio at the cor-
responding region of low wave vectors ¢,.. In addition, for
the XY plane, we find that the high field causes the structure
factor to increase at the low g, region, and hence the struc-
ture factor ratio is larger than unity, as shown in Figs. 2(a)
and 2(b). This means the compressibility increases at high
field values. Figure 8(b) in Ref. [27] (or Fig. 8 in Ref. [28])
shows the fact that for small g, the ratio of the #=90° struc-
ture factor at nonzero field to that at zero field should be
larger than unity. This is also reflected in our Figs. 2(a) and
2(b), in which S(q,)|ae0/S(¢xy)aco is displayed. However,
for the XZ plane, it is found that at high fields the XZ-plane
structure factor is suppressed at low ¢, and shows fewer
fluctuations when compared to the data at high ¢,,, see Figs.
2(c) and 2(d). Furthermore, we observe a clear peak in Figs.
2(c) and 2(d), located at oq,,=~ 2, which corresponds to a
real-space value r= o. This means that the high field favors
chain formation significantly. As mentioned in Sec. II C, ow-
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ing to the isotropic behavior along the x and y axes, our
S(g,.) can be seen to be equivalent to the averaged structure

factor S(6). For a certain ¢, the ratio of the averaged struc-
ture factor at nonzero field to that at zero field can be smaller
or larger than unity, see Fig. 8 in Ref. [28] [or Fig. 8(b) in
Ref. [27]]. This phenomenon has also been displayed in Figs.
2(c) and 2(d). In simple terms, the reason for the difference
between the results obtained for the XY and XZ planes is due
to the existence of anisotropy in the structure of our model
ferrofluid.

In Fig. 3, we show the pair distribution functions (a,b)
g(ry,) and (c,d) g(r,,) for (a,c) x,=0.4m and (b,d) x,=1.67
as a function of \ at nonzero field (a«=9). As the external
field is applied along the z axis, chains start to form and get
directed along the z axis. Since the particle positions are
projected onto the XY plane, slight deviations from perfect
alignment lead to a high probability for one particle to find
another particle at r,,=0. In this way, the shape and value of
g(r,,=0) reflects the length and alignment of the chain into
the z direction. Thus, g(r,,)>1 as r,,— 0 [see Figs. 3(a) and
3(b)], which hints at the existence of the particle chains. The
observed minimum at =2.50 at A=8 is probably due to the
onset of a depletion zone due to the strong repulsion of the
chains, analogous to a correlation hole in repulsively inter-
acting systems. To see the depletion in real space observed
for A=8 in Fig. 3(a), we plot the projection of particle loca-
tions onto the XY plane, see Fig. 4. There, the depletion zone
can be clearly seen.

In detail, in Figs. 3(c) and 3(d) a series of peaks occur: (1)
the higher height of a peak reflects both the formation of
longer chains and the higher chain density (especially the
density of short chains); (2) the higher the number of peaks
is, the larger are the average particle chains. These two
points are justified when comparing the cases with different
\ at a given x;, see Figs. 3(c) and 3(d). In addition, since
there are more peaks observed in the plots of g(r,,) for «
=9 (nonzero field) than for zero field (no figure shown here),
this also demonstrates that an external field increases the
observed chain length, as can also be shown more directly in
a real-space cluster analysis [25].

Finally, it is found that at a fixed value of A, the number
and peaks of g(r,,) and g(r,,) can be suppressed by higher
densities, showing that chain formation is more difficult at
higher densities [25,26]. In detail, at higher densities the en-
hanced angular correlation between the particles lets them
distribute more uniformly, and thus there is less apparent
long-range ordered chainlike structure in the system.

The structure factor in a given range of wave vectors can
scale as [60]

S(q) ~ ¢, (19)

where 1/v is the fractal dimension (1/v<2 in two dimen-
sions and 1/v<3 in three dimensions), which characterizes
the structure of a particle chain on a particular length scale.
For rodlike molecules v=1, for a Gaussian chain »=0.5, and
for a random self-avoiding walk in three dimensions v
=0.588. Sufficiently long chains formed by strong dipolar
interactions should behave similar to living polymers [21],
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and therefore we could expect some region of g vectors
where a corresponding scaling regime should be found.

Figure 5 shows the log-log plots of the structure factor for
(a) S(gyy,), which is the isotropic case, (b) S(q,,), and (c)
S(g,.) for (a) zero field and (b,c) nonzero field. In these fig-
ures, the lines denote fits to the equation S(quz)=quyZ"” Y,
At zero field (a=0), S(g,,,) was fitted in the range I
<o0q,,.<m [see Fig. 5(a)]. This choice of upper limit
04q,,,= corresponds to a separation =20. S(q,,,) for g,
> is dominated by correlations between adjacent particles
at or close to contact. We find »=0.99 for A\=8, p03
=0.0375, but a larger value of v=1.74 for A=8, po>=0.15.
v=0.99 (~1) denotes the rodlike behavior of the chain
dominated system. However, in the more dense case of
p03:0.15, the value of v increases to v=1.74. We have al-
ready seen that at higher densities the tendency to form
chains is reduced, and it becomes more likely that rings can
appear. A similar behavior was already seen in Ref. [22] and
interpreted in this way. In this connection, it is worth men-
tioning that fitting S(q,,) and S(g,,) in the same range at zero
field, the resulting values for v are also roughly 0.99 and
1.74, respectively, which again demonstrates that the system
is isotropic (figures not shown). The curve for A=4 does not
show any scaling behavior, since the chains are probably too
small due to the smaller dipolar coupling.

At a large field value of @=9, we investigated S(g,,) and
S(q,,) in Figs. 5(b) and 5(c), respectively. S(g,,) show a
similar scaling behavior in the range 1<og,, <2 as we
have seen in Fig. 5(a), and was fitted to the same equation as
before, see Fig. 5(b). This choice of upper limit g,,=27 is
related to a separation =~¢ for touching particles, however
the sensitivity of the fit to the limits is rather strong. We find
that »=1.05, 0.71, and 0.92 for A\=4 and p03=0.075; A=8
and po°=0.0375; and A=8 and po’=0.15, respectively.
Since the chains are now directed into the z direction, it is
not obvious how the projection of that into the XY plane
should scale. For A=8 and p=0.0375, the peak in Fig. 3(a) at
ry=7.65 is reflected as the first peak in Fig. 5(b) at g,
~(.83. Also the dips in the structure factor can be related to
the occurrence of the correlation holes seen in Figs. 3(a) and
3(b).

The data for the three cases of S(g,,) of Fig. 5(c) do not
show any significant scaling behavior, except for the peak at
real-space distances of =~o¢ for touching spheres, which does
not contain any significant information.

Figure 6 shows the 2D structure factor pattern S(q , ,q;)
for monodispersed cases. The pattern is always isotropic at
zero applied field, for different coupling constant A=4,8.
Only the application of an external applied magnetic field
yields an anisotropic pattern. Then the structure factor be-
comes anisotropic with a significant increase of the strength
perpendicular to the field axis, in contrast to a simultaneous
decrease along the field axis. A similar behavior has also
been found in the experimental SANS (small-angle neutron
scattering) patterns of Ref. [27], see Figs. 3(a) and 8(a)
therein. Our Fig. 6 further shows that larger A\ leads to a
stronger degree of anisotropy, which is just indicative of par-
ticle chains of increasing length.

In Figs. 7-10 we investigate the bidispersed case of Ref.
[26] in an attempt to study the influence of polydispersity in
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FIG. 7. (Color online) Bidispersed case: Structure factor (a,b)
S(g,,) and (c,d) S(g,,) as a function of the volume fraction of large
particles ¢, at (a,c) zero field and (b,d) nonzero field. The total
volume fraction of the large and small particles is fixed to ¢
=0.07. The number density p=0.1237,0.1051,0.0615,0.0326 cor-
responds to the system of the volume fraction of the large particles
#;=0.007,0.02,0.05,0.07, respectively.

the particle size and subsequently in the dipole moment. In
the simulations, the total volume fraction ¢ of the large and
small particles is fixed to ¢=0.07, and the volume fraction of
the large particles is varied from 0.007 to 0.07 (only large
particles present). Figure 7 shows the structure factor (a,b)
S(gyy) and (c.d) S(g,,) as a function of the number density p
of all the particles (or the volume fraction of the large par-
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0.8

0 ) 10

FIG. 8. (Color online) Bidispersed case: Same as Fig. 7, but for
the pair distribution function (a,b) g(r,,) and (c,d) g(r,,).
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FIG. 9. Projection of particle locations onto the XY plane, to
account for the depletion observed for p=0.0326 (or ¢;=0.07) in
Fig. 8(b).

ticles ¢;), at (a,c) zero field and (b,d) nonzero field. In fact,
at zero field (a=0), the system under consideration behaves
as an isotropic system, and hence Fig. 7(a) [S(¢,,)] and Fig.
7(c) [S(g,.)] display the same behavior. In particular, at zero
field or nonzero field, decreasing p (i.e., increasing ¢;) al-
ways causes S(g,,) to increase in the low-g,, region [see
Figs. 7(a) and 7(b)]. However, at nonzero field, decreasing p
causes S(g,.) to decrease in the low-g,. region [see Fig.
7(d)]. Moreover, increasing the magnetic field leads to in-
creasing S(q,,) in the low-g,, region again, but decreasing
S(g,.) in the low-g,. region. In addition, it is found that
S(g,.) increases in the high-g,, region as the magnetic field
increases. This is consistent with Fig. 2 in which a monodis-
persed case is studied. In Fig. 7(c) (zero field), a peak is
induced to appear at about g,,=27/F, where 7= (o, +05)/2
for the bidispersed cases of p=0.1237,0.1051,0.0615
(namely, ¢;=0.007,0.02,0.05) and 7= o, for the monodis-
persed case of p=0.0326 (i.e., ¢;=0.07). Similar behavior is
found in Fig. 7(d) (nonzero field), in which, however, a clear
second peak is observed. This second peak is located at g,
=4m/7, which is two times the location of the first peak.
Note the peak value at nonzero field is much higher than that
at zero field, which is also indicative of a larger presence of
clusters in the system.

Similar to Fig. 7, Fig. 8 shows the anisotropic pair distri-
bution function (a,b) g(r,,) and (c,d) g(r,,) at (a,c) zero field
and (b,d) nonzero field. For the isotropic system, g(r,,) [Fig.
8(a)] behaves the same as g(r,.) [Fig. 8(c)] at zero field,
since no anisotropy is present. In particular, for p=0.0326
(i.e., ¢;=0.07), where only large particles are present, Figs.
8(b) and 8(d) shows a similar behavior to Fig. 3, where a
monodispersed case is studied at nonzero field as well. At a
high concentration of large interacting particles again a
depletion zone due to repulsive dipolar interactions is seen
for the case p=0.0615 and p=0.0326. To see the depletion in
real space observed for p=0.0326 (or ¢,=0.07) in Fig. 8(b),
Fig. 9 is plotted to display the projection of particle locations
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FIG. 10. Bidispersed case: 2D structure factor S(g,,q) of bidispersed cases, with —m<gq, <7 and —w<g <, with an applied
magnetic field perpendicular to the horizontal axis, at a fixed total volume fraction of both small and large particles ¢=0.07. From left to
right panels: @=0,2.9,6.1,8.9. From top to bottom panels: volume fraction of large particles ¢;=0.007,0.02,0.05,0.07.

onto the XY plane, where the depletion zone can be clearly
observed.

In addition to what has been mentioned in Fig. 3, from
Figs. 8(c) and 8(d) it can be nicely seen that, as p decreases
(or ¢, increases) and a large field is switched on, longer
particle chains form inside the suspension, which is actually
reflected by the higher number of peaks in these figures. In
particular, clusters of size 6 are still visible, see Fig. 8(d). In
other words, such chains exist for large particles only, which
is due to their larger dipolar coupling constant compared to
the small particles.

Similar to Fig. 6, in Fig. 10 we plot the 2D structure
factor pattern S(q , ,q;) for the bidispersed cases. The isotro-

pic pattern obtained at zero field (a=0) becomes anisotropic
for nonzero field (a# 0). Moreover, the increase of magnetic
field causes the degree of anisotropy to be increased. In the
meantime, as the volume fraction of large particles increases,
the degree of anisotropy can further be increased, because of
the formation of more and more chains of the large particles.
Due to numerical artifacts, the 2D structure factor patterns in
Figs. 6 and 10 without magnetic fields are slightly aniso-
tropic.

Regarding the bidispersed system, for the cases of the two
smaller amounts of large particles, the obtained curves for
structure factors and pair distribution functions seem to be
identical within statistical error (Figs. 7 and 8). This can also
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be shown in the 2D structure factor pattern in Fig. 10. So, the
volume fraction of large particles ¢; should be large enough
to show significant effect. In other words, in the present
simulations, ¢;=0.05 serves as a minimal concentration at
which the effect of large particles is evident.

IV. DISCUSSIONS AND CONCLUSIONS

In the limiting case of perfectly oriented dipoles [35,36],
the ferrofluid particles are fully aligned, with negligible ther-
mal fluctuations of the direction of magnetic moments. In
this work, we have taken into account the thermal fluctua-
tions of the direction of magnetic moments. As a matter of
fact, the high-field system in this work just corresponds to
the case of perfectly oriented dipoles discussed in Refs.
[35,36], and particle chains can be found indeed as already
predicted [35,36].

To summarize our work, we have used molecular-
dynamics simulations to investigate the structure of the
monodispersed and bidispersed ferrofluid, which was sub-
jected to an applied magnetic field along the z axis. The
ferrofluid was modeled as a soft-sphere system having a
purely repulsive LJ potential. In the simulations, we used the
Ewald summation with metallic boundary conditions to treat
the long-range dipolar interactions, and we took explicitly
into account the translational and rotational degrees of free-
dom of the dipolar particles. The temperature was kept con-
stant by means of a Langevin thermostat for all degrees of
freedom. Our results for the isotropic structure factor are
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similar in trend to those obtained by using an alternative
Monte Carlo method, although they were scanning a differ-
ent parameter region close to an assumed critical region. In
our work, we were mainly interested in the anisotropic struc-
ture factor and pair distribution functions, calculated for XY
and XZ planes, respectively, in an attempt to investigate the
anisotropy of the structure of our model ferrofluid. For this
purpose, the 2D structure factor patterns S(q , ,¢q,) were fur-
ther investigated.

We have demonstrated that the analysis of structure fac-
tors as well as pair distribution functions can help to under-
stand the formation of particle chains in ferrofluids. In fact,
from the simulational point of view, based on the data of
particle positions, we have already performed a cluster
analysis [25,26] which gives an alternative proof for the pre-
sented results for the existence of particle chains. However,
in view of the fact that in experiments structure factors rather
than particle positions are measured directly, this paper is
aimed at helping one to interpret experimental observations.
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